Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Does predation contribute to tree diversity?

Identifieur interne : 004059 ( Main/Exploration ); précédent : 004058; suivant : 004060

Does predation contribute to tree diversity?

Auteurs : Brian Beckage [États-Unis] ; James S. Clark

Source :

RBID : pubmed:15719246

Descripteurs français

English descriptors

Abstract

Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.

DOI: 10.1007/s00442-004-1815-9
PubMed: 15719246


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Does predation contribute to tree diversity?</title>
<author>
<name sortKey="Beckage, Brian" sort="Beckage, Brian" uniqKey="Beckage B" first="Brian" last="Beckage">Brian Beckage</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of Vermont, Marsh Life Science Building, Burlington, VT 05405, USA. Brian.Beckage@uvm.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Vermont, Marsh Life Science Building, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Clark, James S" sort="Clark, James S" uniqKey="Clark J" first="James S" last="Clark">James S. Clark</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15719246</idno>
<idno type="pmid">15719246</idno>
<idno type="doi">10.1007/s00442-004-1815-9</idno>
<idno type="wicri:Area/Main/Corpus">004116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004116</idno>
<idno type="wicri:Area/Main/Curation">004116</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004116</idno>
<idno type="wicri:Area/Main/Exploration">004116</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Does predation contribute to tree diversity?</title>
<author>
<name sortKey="Beckage, Brian" sort="Beckage, Brian" uniqKey="Beckage B" first="Brian" last="Beckage">Brian Beckage</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of Vermont, Marsh Life Science Building, Burlington, VT 05405, USA. Brian.Beckage@uvm.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of Vermont, Marsh Life Science Building, Burlington, VT 05405</wicri:regionArea>
<placeName>
<region type="state">Vermont</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Clark, James S" sort="Clark, James S" uniqKey="Clark J" first="James S" last="Clark">James S. Clark</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="ISSN">0029-8549</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Environment (MeSH)</term>
<term>Fertility (physiology)</term>
<term>Food Chain (MeSH)</term>
<term>Linear Models (MeSH)</term>
<term>North Carolina (MeSH)</term>
<term>Seeds (growth & development)</term>
<term>Species Specificity (MeSH)</term>
<term>Trees (growth & development)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (croissance et développement)</term>
<term>Arbres (physiologie)</term>
<term>Caroline du Nord (MeSH)</term>
<term>Chaine alimentaire (MeSH)</term>
<term>Environnement (MeSH)</term>
<term>Fécondité (physiologie)</term>
<term>Graines (croissance et développement)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>North Carolina</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
<term>Graines</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Seeds</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Fécondité</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fertility</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Environment</term>
<term>Food Chain</term>
<term>Linear Models</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Caroline du Nord</term>
<term>Chaine alimentaire</term>
<term>Environnement</term>
<term>Modèles linéaires</term>
<term>Spécificité d'espèce</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15719246</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>06</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0029-8549</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>143</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2005</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Does predation contribute to tree diversity?</ArticleTitle>
<Pagination>
<MedlinePgn>458-69</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Seed and seedling predation may differentially affect competitively superior tree species to increase the relative recruitment success of poor competitors and contribute to the coexistence of tree species. We examined the effect of seed and seedling predation on the seedling recruitment of three tree species, Acer rubrum (red maple), Liriodendron tulipifera (yellow poplar), and Quercus rubra (northern red oak), over three years by manipulating seed and seedling exposure to predators under contrasting microsite conditions of shrub cover, leaf litter, and overstory canopy. Species rankings of seedling emergence were constant across microsites, regardless of exposure to seed predators, but varied across years. A. rubrum had the highest emergence probabilities across microsites in 1997, but Q. rubra had the highest emergence probabilities in 1999. Predators decreased seedling survival uniformly across species, but did not affect relative growth rates (RGRs). Q. rubra had the highest seedling survivorship across microsites, while L. tulipifera had the highest RGRs. Our results suggest that annual variability in recruitment success contributes more to seedling diversity than differential predation across microsites. We synthesized our results from separate seedling emergence and survival experiments to project seedling bank composition. With equal fecundity assumed across species, Q. rubra dominated the seedling bank, capturing 90% of the regeneration sites on average, followed by A. rubrum (8% of sites) and L. tulipifera (2% of sites). When seed abundance was weighted by species-specific fecundity, seedling bank composition was more diverse; L. tulipifera captured 62% of the regeneration sites, followed by A. rubrum (21% of sites) and Q. rubra (17% of sites). Tradeoffs between seedling performance and fecundity may promote the diversity of seedling regeneration by increasing the probability of inferior competitors capturing regeneration sites.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Beckage</LastName>
<ForeName>Brian</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of Vermont, Marsh Life Science Building, Burlington, VT 05405, USA. Brian.Beckage@uvm.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Clark</LastName>
<ForeName>James S</ForeName>
<Initials>JS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>02</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="Y">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005298" MajorTopicYN="N">Fertility</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="Y">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009657" MajorTopicYN="N" Type="Geographic">North Carolina</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>03</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2004</Year>
<Month>12</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>6</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15719246</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-004-1815-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 May 23;417(6887):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12024212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1992 Aug;140(2):243-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 30;305(5684):663-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Apr;127(2):281-286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24577661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1979 Dec;44(1):141-142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1998 Jan;85(1):79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21684882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1992 Aug;140(2):261-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 Aug;67(1):150-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28309862</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Vermont</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Clark, James S" sort="Clark, James S" uniqKey="Clark J" first="James S" last="Clark">James S. Clark</name>
</noCountry>
<country name="États-Unis">
<region name="Vermont">
<name sortKey="Beckage, Brian" sort="Beckage, Brian" uniqKey="Beckage B" first="Brian" last="Beckage">Brian Beckage</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004059 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004059 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15719246
   |texte=   Does predation contribute to tree diversity?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15719246" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020